Performance Analysis of Standard k-Means Clustering Algorithm on Clustering TMG format Document Data
نویسنده
چکیده
Document clustering is useful in many information retrieval operations such as document browsing, organization and viewing of retrieval results, generation of Yahoo-like hierarchies of documents, etc. The general goal of clustering is to group data elements such that the intra-group similarities are high and the inter-group similarities are low. Generative models based on the multivariate Bernoulli and multinomial distributions have been widely used for text classification. In this work, we explore the k-means clustering algorithm for document clustering problem. The proposed work implements the standard k-mean clustering algorithm and tests it with TMG format document data and L2normalized document data. The results of the k-means clustering algorithm are compared with von Mises-Fisher model-based clustering (vMF-based k-means) algorithm. Key WordsText Clustering, Classification, Document Clustering, Model Based Clustering, Term Document Matrix, Text to Matrix Generator (TMG), k-means, MisesFisher Clustering
منابع مشابه
MLK-Means - A Hybrid Machine Learning based K-Means Clustering Algorithms for Document Clustering
Document clustering is useful in many information retrieval tasks such as document browsing, organization and viewing of retrieval results. They are very much and currently the subject of significant global research. Generative models based on the multivariate Bernoulli and multinomial distributions have been widely used for text classification. In this work, address a new hybrid algorithm call...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کامل